Copied to
clipboard

G = C3×C42⋊C3order 144 = 24·32

Direct product of C3 and C42⋊C3

direct product, metabelian, soluble, monomial, A-group

Aliases: C3×C42⋊C3, C42⋊C32, (C4×C12)⋊C3, (C2×C6).2A4, C22.(C3×A4), SmallGroup(144,68)

Series: Derived Chief Lower central Upper central

C1C42 — C3×C42⋊C3
C1C22C42C42⋊C3 — C3×C42⋊C3
C42 — C3×C42⋊C3
C1C3

Generators and relations for C3×C42⋊C3
 G = < a,b,c,d | a3=b4=c4=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc-1, dcd-1=b-1c2 >

3C2
16C3
16C3
16C3
3C4
3C4
3C6
16C32
3C2×C4
3C12
3C12
4A4
4A4
4A4
3C2×C12
4C3×A4

Character table of C3×C42⋊C3

 class 123A3B3C3D3E3F3G3H4A4B4C4D6A6B12A12B12C12D12E12F12G12H
 size 131116161616161633333333333333
ρ1111111111111111111111111    trivial
ρ211ζ32ζ3ζ321ζ3ζ321ζ31111ζ32ζ3ζ3ζ32ζ3ζ32ζ3ζ3ζ32ζ32    linear of order 3
ρ311ζ32ζ31ζ321ζ3ζ3ζ321111ζ32ζ3ζ3ζ32ζ3ζ32ζ3ζ3ζ32ζ32    linear of order 3
ρ411ζ3ζ321ζ31ζ32ζ32ζ31111ζ3ζ32ζ32ζ3ζ32ζ3ζ32ζ32ζ3ζ3    linear of order 3
ρ51111ζ32ζ3ζ3ζ3ζ32ζ3211111111111111    linear of order 3
ρ611ζ32ζ3ζ3ζ3ζ321ζ3211111ζ32ζ3ζ3ζ32ζ3ζ32ζ3ζ3ζ32ζ32    linear of order 3
ρ711ζ3ζ32ζ32ζ32ζ31ζ311111ζ3ζ32ζ32ζ3ζ32ζ3ζ32ζ32ζ3ζ3    linear of order 3
ρ81111ζ3ζ32ζ32ζ32ζ3ζ311111111111111    linear of order 3
ρ911ζ3ζ32ζ31ζ32ζ31ζ321111ζ3ζ32ζ32ζ3ζ32ζ3ζ32ζ32ζ3ζ3    linear of order 3
ρ103333000000-1-1-1-133-1-1-1-1-1-1-1-1    orthogonal lifted from A4
ρ1133-3-3-3/2-3+3-3/2000000-1-1-1-1-3-3-3/2-3+3-3/2ζ65ζ6ζ65ζ6ζ65ζ65ζ6ζ6    complex lifted from C3×A4
ρ1233-3+3-3/2-3-3-3/2000000-1-1-1-1-3+3-3/2-3-3-3/2ζ6ζ65ζ6ζ65ζ6ζ6ζ65ζ65    complex lifted from C3×A4
ρ133-1330000001-1+2i-1-2i1-1-11-1+2i-1-2i-1-2i1-1+2i11    complex lifted from C42⋊C3
ρ143-133000000-1-2i11-1+2i-1-1-1+2i111-1-2i1-1+2i-1-2i    complex lifted from C42⋊C3
ρ153-133000000-1+2i11-1-2i-1-1-1-2i111-1+2i1-1-2i-1+2i    complex lifted from C42⋊C3
ρ163-1330000001-1-2i-1+2i1-1-11-1-2i-1+2i-1+2i1-1-2i11    complex lifted from C42⋊C3
ρ173-1-3-3-3/2-3+3-3/20000001-1-2i-1+2i1ζ6ζ65ζ343ζ32324ζ334ζ3232ζ343ζ33ζ32ζ32    complex faithful
ρ183-1-3-3-3/2-3+3-3/20000001-1+2i-1-2i1ζ6ζ65ζ34ζ323243ζ3343ζ3232ζ34ζ33ζ32ζ32    complex faithful
ρ193-1-3+3-3/2-3-3-3/2000000-1+2i11-1-2iζ65ζ643ζ3232ζ3ζ32ζ34ζ3232ζ3243ζ334ζ33    complex faithful
ρ203-1-3-3-3/2-3+3-3/2000000-1-2i11-1+2iζ6ζ654ζ33ζ32ζ3ζ3243ζ33ζ34ζ323243ζ3232    complex faithful
ρ213-1-3+3-3/2-3-3-3/2000000-1-2i11-1+2iζ65ζ64ζ3232ζ3ζ32ζ343ζ3232ζ324ζ3343ζ33    complex faithful
ρ223-1-3-3-3/2-3+3-3/2000000-1+2i11-1-2iζ6ζ6543ζ33ζ32ζ3ζ324ζ33ζ343ζ32324ζ3232    complex faithful
ρ233-1-3+3-3/2-3-3-3/20000001-1+2i-1-2i1ζ65ζ6ζ324ζ3343ζ323243ζ33ζ324ζ3232ζ3ζ3    complex faithful
ρ243-1-3+3-3/2-3-3-3/20000001-1-2i-1+2i1ζ65ζ6ζ3243ζ334ζ32324ζ33ζ3243ζ3232ζ3ζ3    complex faithful

Smallest permutation representation of C3×C42⋊C3
On 36 points
Generators in S36
(1 4 6)(2 10 5)(3 12 8)(7 9 11)(13 21 27)(14 22 28)(15 23 25)(16 24 26)(17 34 31)(18 35 32)(19 36 29)(20 33 30)
(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(1 3 7 2)(4 12 9 10)(5 6 8 11)(13 15)(14 16)(17 18 19 20)(21 23)(22 24)(25 27)(26 28)(29 30 31 32)(33 34 35 36)
(1 16 29)(2 13 32)(3 15 30)(4 24 19)(5 27 35)(6 26 36)(7 14 31)(8 25 33)(9 22 17)(10 21 18)(11 28 34)(12 23 20)

G:=sub<Sym(36)| (1,4,6)(2,10,5)(3,12,8)(7,9,11)(13,21,27)(14,22,28)(15,23,25)(16,24,26)(17,34,31)(18,35,32)(19,36,29)(20,33,30), (13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,3,7,2)(4,12,9,10)(5,6,8,11)(13,15)(14,16)(17,18,19,20)(21,23)(22,24)(25,27)(26,28)(29,30,31,32)(33,34,35,36), (1,16,29)(2,13,32)(3,15,30)(4,24,19)(5,27,35)(6,26,36)(7,14,31)(8,25,33)(9,22,17)(10,21,18)(11,28,34)(12,23,20)>;

G:=Group( (1,4,6)(2,10,5)(3,12,8)(7,9,11)(13,21,27)(14,22,28)(15,23,25)(16,24,26)(17,34,31)(18,35,32)(19,36,29)(20,33,30), (13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,3,7,2)(4,12,9,10)(5,6,8,11)(13,15)(14,16)(17,18,19,20)(21,23)(22,24)(25,27)(26,28)(29,30,31,32)(33,34,35,36), (1,16,29)(2,13,32)(3,15,30)(4,24,19)(5,27,35)(6,26,36)(7,14,31)(8,25,33)(9,22,17)(10,21,18)(11,28,34)(12,23,20) );

G=PermutationGroup([[(1,4,6),(2,10,5),(3,12,8),(7,9,11),(13,21,27),(14,22,28),(15,23,25),(16,24,26),(17,34,31),(18,35,32),(19,36,29),(20,33,30)], [(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(1,3,7,2),(4,12,9,10),(5,6,8,11),(13,15),(14,16),(17,18,19,20),(21,23),(22,24),(25,27),(26,28),(29,30,31,32),(33,34,35,36)], [(1,16,29),(2,13,32),(3,15,30),(4,24,19),(5,27,35),(6,26,36),(7,14,31),(8,25,33),(9,22,17),(10,21,18),(11,28,34),(12,23,20)]])

C3×C42⋊C3 is a maximal subgroup of   (C4×C12)⋊S3  (C4×C12)⋊C6  C42⋊C3⋊S3  C42⋊3- 1+2  C42⋊He3
C3×C42⋊C3 is a maximal quotient of   C42⋊3- 1+2  C122.C3  C42⋊He3

Matrix representation of C3×C42⋊C3 in GL3(𝔽13) generated by

300
030
003
,
800
050
001
,
800
0120
008
,
010
001
100
G:=sub<GL(3,GF(13))| [3,0,0,0,3,0,0,0,3],[8,0,0,0,5,0,0,0,1],[8,0,0,0,12,0,0,0,8],[0,0,1,1,0,0,0,1,0] >;

C3×C42⋊C3 in GAP, Magma, Sage, TeX

C_3\times C_4^2\rtimes C_3
% in TeX

G:=Group("C3xC4^2:C3");
// GroupNames label

G:=SmallGroup(144,68);
// by ID

G=gap.SmallGroup(144,68);
# by ID

G:=PCGroup([6,-3,-3,-2,2,-2,2,326,230,2379,69,2164,3893]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=c^4=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^-1,d*c*d^-1=b^-1*c^2>;
// generators/relations

Export

Subgroup lattice of C3×C42⋊C3 in TeX
Character table of C3×C42⋊C3 in TeX

׿
×
𝔽